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INTRODUCTION

This study has been focused on the development, validation and

application of a fractional step solution method of the time-

dependent incompressible Navier-Stokes equations in generalized
coordinate systems. A solution method that combines a finite-

volume discretization with a novel choice of the dependent variables

and a fractional step splitting to obtain accurate solutions in

arbitrary geometries has been previously developed for fixed-grids,
see Ref. (1).

In the present research effort, this solution method is

extended to include more general situations, including cases with

moving grids. The numerical techniques are enhanced to gain

efficiency and generality. This report summarizes briefly the work

performed during the period October 1, 1988 through February 15,
1990. Additional details on the various aspects of the study are
given in Appendix A.

NUMERICAL ENHANCEMENTS

The fixed grid solution method has been extended to general

moving grids. Errors originating from the discrete approximation of

the time-dependent coordinate system are minimized by satisfying

the discrete geometric conservation laws for the time-varying

computational cells. To improve the efficiency of the fixed grid
case, two versions of the solution method have been coded: (1)
fixed-grid method, (2) moving-grid method.

During the present study, several enhancements of the

numerical method have been introduced. A partial list of the

modifications is given below:

(1) Implementation of more general boundary conditions
implicitly. The allowable boundary conditions are:



(a)
(b)
(c)

Periodic conditions,

Symmetric conditions,

Mixed Dirichlet and Neumann type boundary conditions.

(2) The solution method has been extended to geometrically

singular boundaries for the three types of grid topologies (C, O
or H grids).

(3) A multi-grid Poisson solver has been written and partially
debugged.

(4) Extensive efforts have been made to increase the efficiency of
the method by improved vectorization. Presently, the fixed-

grid method runs at 80 MFLOPS on the CRAY YMP (single CPU)

and about 300 - 400 . 10 -6 CPU sec/mesh-point/time-step are

consumed. The moving-grid code is not yet fully vectorized.

VALIDATION OF THE METHOD

Several additional cases have been solved to validate the

method against other numerical and experimental results. In all the

cases tested so far, good agreement is obtained. The validation
cases include:

.i

Fixed-Grid Case:

(1) Flow in a two-dimensional polar cavity.

(2) Flow in a two-dimensional channel with a fixed constriction

and a time variable pressure gradient.

(3) Flow over a two-dimensional elliptic airfoil with a steady and
pulsatile upstream flow and a high laminar Reynolds number
(Re = 14,300).

(4) Three-dimensional flow in curved ducts, both with rectangular
and circular cross-sections.

(5) Flow over a submarine body at an incidence of 0 o and 20 o.
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Additional details of these validation cases can be found in
Ref. (2). A brief summary of preliminary results for two
validation cases is given below:

Flow Over an Elliptical Airfoil at a High Reynolds Number

The two-dimensional flow over an elliptical airfoil of

thickness ratio 1:2.91 at 14o angle of attack and a Reynolds number

of 14,300 has been solved to compare with the recent experimental

results. Two cases have been considered, (a) steady upstream flow,

(b) pulsatile upstream flow. In the second case, a sinusoidally

pusatile upstream flow with an amplitude of 5% of the steady part,
and a non-dimensional period of T = 6.86 was simulated. A non-

orthogonal 0-type grid of 161 x 141 mesh points in the radial and

circumferential directions, respectively, has been used. Figure 1

gives the time-evolution of the lift and drag coefficients for the

steady and pulsatile upstream flows (it should be noted that in the

pulsating case, the time is normalized by the period time T). The

analysis of the results and the comparisons with the experimental
results will be reported elsewhere.

Flow Over a Submarine Body at Low Reynolds Numbers

The axisymmetric flow over a submarine body has been

computed for a low Reynolds number of Re = 1000 and a zero angle of

attack. Figure 2 compares the pressure coefficient on the body of

the submarine with the computed results of Ryan (Private

Communication), while Fig. 3 shows the effect of the Reynolds
number on the pressure coefficient. Figure 4 shows the distribution

of the pressure coefficient for an incidence of 20 o. Figure 5 plots,

for the same case, the limiting streamlines (viewed from the rear

end of the submarine) and the particle traces (side view).

Moving-Grid Case:

(1)

(2)

(3)

Flow over a circular cylinder with a moving outer boundary.

Flow in a two-dimensional channel with a moving constriction.

Flow in a two-dimensional cavity with a moving piston.
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Additional details on these validation cases can be found in

Appendix A.

CONCLUDING REMARKS

In the present study, a fractional step solution method of the

time-dependent, viscous and incompressible Navier-Stokes

equations has been extended, enhanced and validated for both fixed

and moving generalized coordinate systems. The method has been

used to simulate time-periodic vortical flow fields. Investigation

of these flows by novel analysis methods that are being developed by

the author, may advance the understanding of the complex vortical

flow phenomena found in pulsating flows.

The study has demonstrated the capabilities of the present

fractional solution method in simulating accurately complicated

incompressible time-dependent viscous flow fields.
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Fig. 1 Time evolution of the force-coefficients on an elliptic
cylinder at 14o incidence and Re = 14,300.
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Fig. 3 - Effect of Reynolds number on the pressure-coefficient on
submarine body at OO incidence.
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Fig. 4 - Distribution of the pressure-coefficient on the submarine

body at 20 ° incidence.
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Fig. 5 - Limiting streamlines and particle traces for the submarine

body at 20 o incidence.
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